

Organisation de la thématique

- Réseau ferroviaire en Suisse
 - >> Classement des voies
- ▶ Composantes de la voie ferrée
 - >> Rails
 - >> Traverses
 - >> Ballast
 - >> Voies sans ballast
- Dimensionnement de la voie ferrée

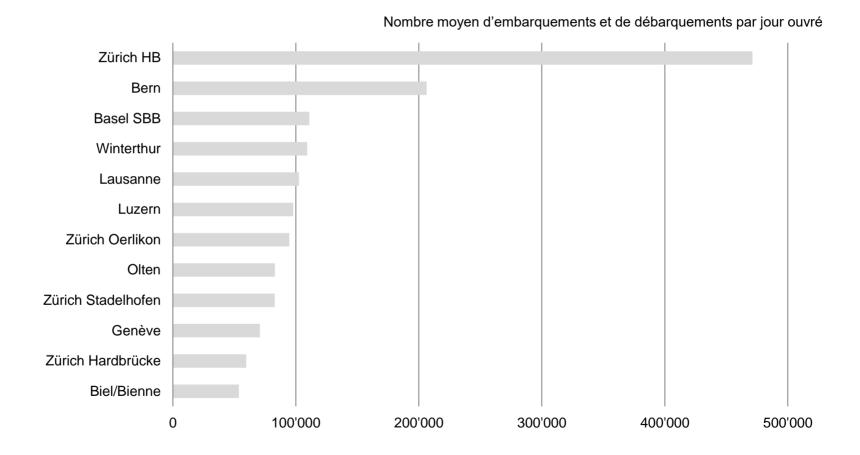
Réseau ferroviaire en Suisse

Réseau ferroviaire en Suisse

Forte utilisation du train

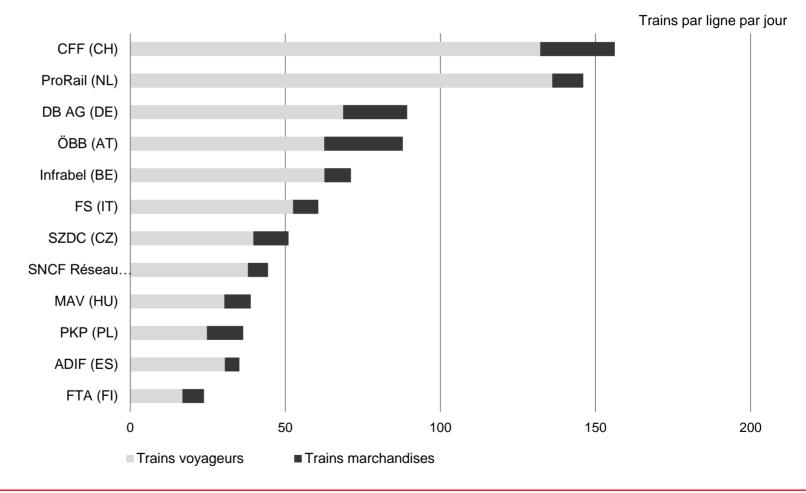
Nombre annuel de voyages

Distance annuelle moyenne



Forte utilisation du train

- ▶ En moyenne 93 trains / jour / Km
 - >> CFF: 159 trains / jour / Km
- Zurich HB 2'050 trains / jour
 - >> Chaque 42 secondes
- ▶ Berne HB 1'050 trains / jour
- ▶ Valeurs 2018
 - → 20'590 mios de passagers × km
 16 %
 - → 10'300 mios de tonnes × km 37 %


Affluence des voyageurs dans les gares

2018

Utilisation de l'infrastructure ferroviaire

▶ Europe - 2019

Classement des voies

▶ Réseau CFF classé selon ...

TGC 25, chapitre 17.3.1

- Charges
- >> Importance du tronçon
- >> Nature du trafic
- >> Vitesse de circulation des convois
- ▶ 2 types de voies
 - >> Voies principales (VP): voies de circulation des trains
 - >> Voies secondaires (VS): voies de gare (voies de garage, manœuvre et formation)

Classement des voies

Catégories de voies

Catégorie de voie	Principaux critères de classement		
VP 1	Voies directes entre les gares: TBC ≥ 30 000 tonnes ou V ≥ 140 km/h		
VP 2	Voies directes entre les gares : 15 000 tonnes ≤ TBC ≤ 30 000 tonnes		
VP 3	Voies directes entre les gares: TBC ≤ 15000 tonnes		
VP 4	Voies de gare: $V \ge 60 \text{ km/h}$		
VP 5	Voies de gare: TBC \geq 30 000 tonnes ou V \leq 60 km/h		
VS	Voies de gare: pas de circulation des trains		

TBC Tonnes Brutes Complètes (charge journalière)

Classement des voies

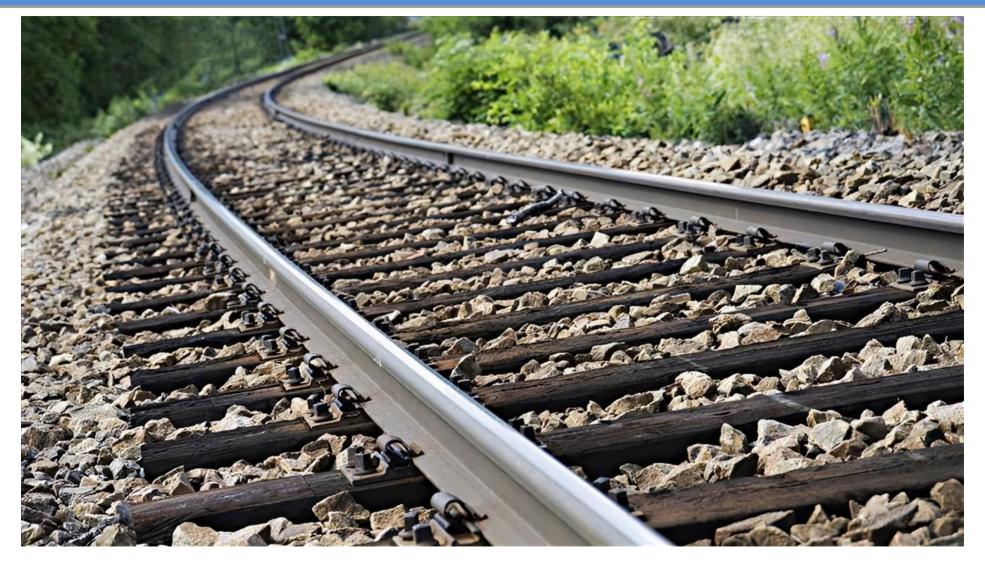
Groupes de voies

Groupe de voies	Catégories des voies	
Groupe 1	VP1 ainsi que VP4, si elles sont sollicitées comme VP1	
Groupe 2	VP2, VP3, autre VP4, VP5 ainsi que VS avec une charge ≥ 5000 TBC/jour	
Groupe 3	VS	

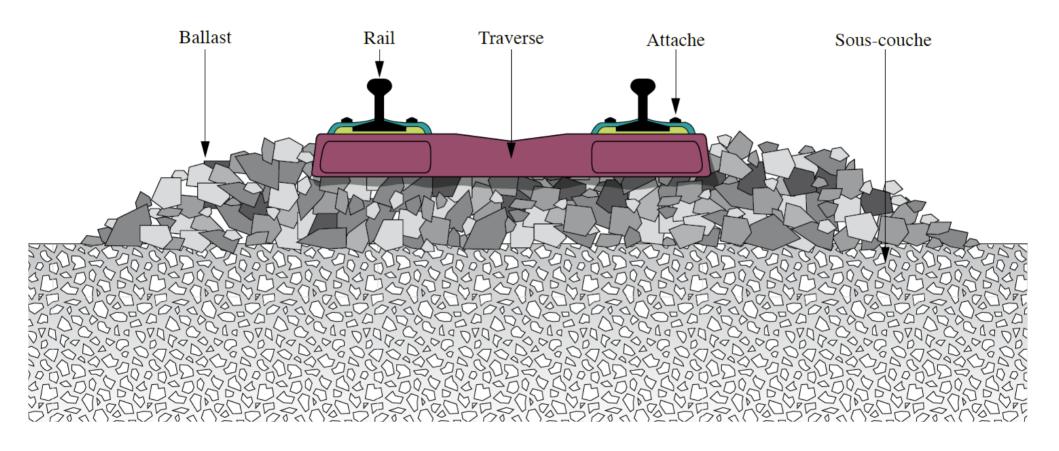
TBC Tonnes Brutes Complètes (charge journalière)

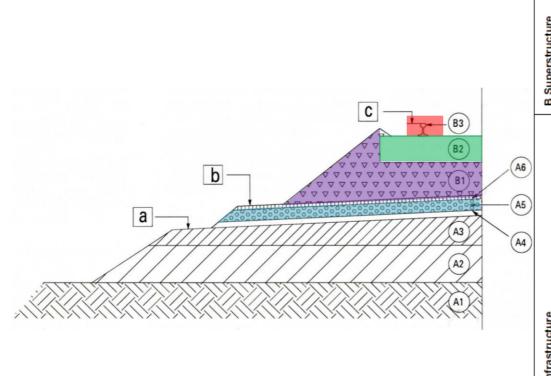
Exemple de classement d'une voie

- ▶ Le Locle Crêt-du-Locle Valeurs 2016
- ▶ Voie unique à 100 km/h


Catégories de train	Heure de	LOCLE - CRET-DU-LOCLE			CRET-DU-LOCLE - LOCLE		
Categories de train	neure de	Nombre de trains	Tonnage brut (t)	Sillons-km	Nombre de trains	Tonnage brut (t)	Sillons-km
Train de marchandises direct	Jour	224	105510	821.408	224	61983	821.408
Train de marchandises direct	Nuit	0	0	0	0	0	0
Intercity/Eurocity	Jour	0	0	0	0	0	0
Intercity/Eurocity	Nuit	0	0	0	0	0	0
Train de matériel vide du trafic voyageurs	Jour	28	3843	102.676	6	1529	22.002
Train de matériel vide du trafic voyageurs	Nuit	741	95956	2717.247	723	121390	2651.241
Train de locs	Jour	5	1000	18.335	9	1768	33.003
Train de locs	Nuit	3	600	11.001	1	200	3.667
RegioExpress	Jour	5'821	925964	21345.607	5'803	891086	21279.601
RegioExpress	Nuit	1'047	137546	3839.349	1'089	146077	3993.363
Train régional	Jour	7'032	1024741	25786.344	7'061	1037735	25892.687
Train régional	Nuit	1'245	169001	4565.415	1'226	157621	4495.742
RER	Jour	97	8781	355.699	98	8918	359.366
RER	Nuit	14	1470	51.338	14	1470	51.338
Train direct/Interregio	Jour	0	0	0	1	310	3.667
Train direct/Interregio	Nuit	1	310	3.667	3	646	11.001
Train de tracteurs	Jour	1	300	3.667	1	300	3.667
Train de tracteurs	Nuit	0	0	0	0	0	0
		16'259	2'475'022	59'622	16'259	2'431'033	59'622

LOCLE - CRET-DU-LOCLE - LOCLE						
Nombre de trains	Tonnage brut (t)	Sillons-km				
448	167493	1642.816				
0	0	0				
0	0	0				
0	0	0				
34	5372	124.678				
1'464	217346	5368.488				
14	2768	51.338				
4	800	14.668				
11'624	1817050	42625.208				
2'136	283623	7832.712				
14'093	2062476	51679.031				
2'471	326622	9061.157				
195	17699	715.065				
28	2940	102.676				
1	310	3.667				
4	956	14.668				
2	600	7.334				
0	0	0				
32'518	4'906'055	119'244				


▶ 13'440 TBC/j


Superstructure d'une voie ferrée ballastée

Superstructure d'une voie ferrée ballastée

Terminologie de la voie ferrée

		Couches		Surfaces	Exemples de materiaux usuels		
			С	Niveau de roulement (PdR)			
cture	В3	Rail			 Acier à rails 		
Superstructure	B2	Traverse			- Béton - Acier - Bois		
BS	B1	Ballast	b	Couche de base	- Roche dure cond	assée	
)	A6	Couche d'étanchéité			Couche bitumineuse Agrégats minéraux	- Grave PSS	
)	A5	Couche de fondation			- Grave 1, 2 - (GW ou GP)		
)	A4	Couche de transition ¹⁾ Couche de drainage ²⁾	а	Plate-forme	 Ballast Gravillon Ballast concassé Sable Géotextile 		
A Infrastructure	A3	Terrain amélioré			Sol compactéStabilisationMatériaux de sut	ostitution	
astru	A2	Remblai			 Matériaux compa 	actés	
A Infr	A1	Terrain naturel			- Terrain non rema	nnié	

[Réglementation CFF – R RTE 21110]

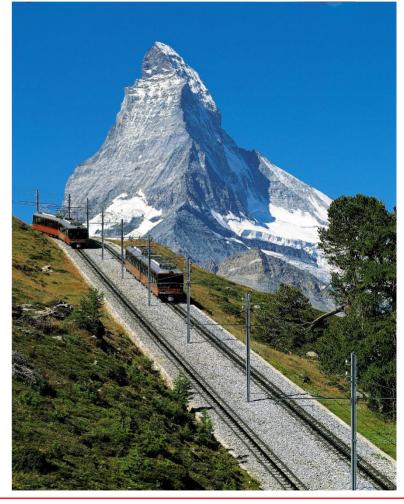
¹⁾ sur infrastructure rigide

²⁾ sur roche fissurée et altérée

Type de voies ferrées – Chemin de fer

Voie ferrée ballastée

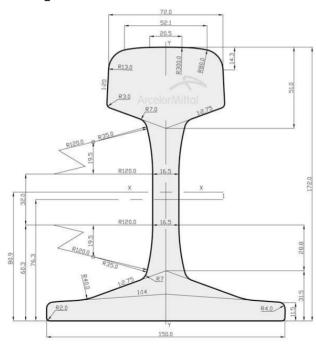
Voie ferrée sur dalle



Autres types de voies ferrées

▶ Tramway

▶ Crémaillère



Composantes de la voie ferrée

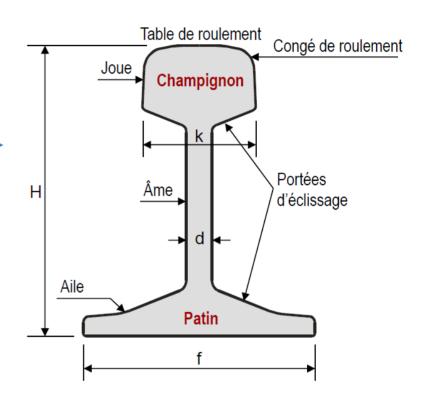
- **▶** Rails
- **▶** Traverses
 - >> y.c. attaches
- **▶** Ballast
- > Sous-couche

Rails

- ▶ Elément en acier soudé
- ▶ Mise en parallèle de 2 rails → Voie ferrée
- ▶ Forme particulière

Rôles du rail

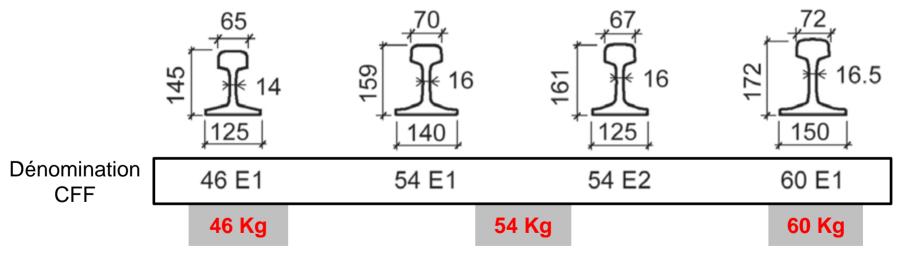
- Supporter la charge verticale des roues et les efforts dynamiques qui en résultent
 - >> Transmettre les charges des roues aux traverses
- Former une surface de roulement continue, lisse et plane
 - Minimiser les efforts de traction (faible résistance spécifique à l'avancement)
- Guider latéralement les roues des véhicules
 - Courbe : reprendre les efforts transversaux dus à la force centrifuge


Rôles du rail

- ▶ Reprendre les efforts longitudinaux
 - Causes : accélération, freinage et résistance au roulement des convois
- Permettre le passage du courant électrique
 - » Circuit de voie des appareils de sécurité
 - >> Retour du courant de traction (lignes électrifiées)

Types de rail

- 2 critères de distinction
 - >> Forme du profil
 - □ Rail Vignole
 - □ Rail à gorge (chaussée)



>> Masse d'acier utilisée par m' de rail

Types de rails actuels

Profil	H mm	f mm	k mm	d mm	Poids kg/m
CFF I	145	125	65	14	46.0
UIC 54E	161	125	67	16	53.8
UIC 60	172	150	72	16.5	60.3

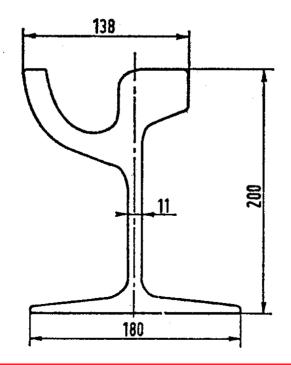
[Réglementation CFF - D RTE 22040]

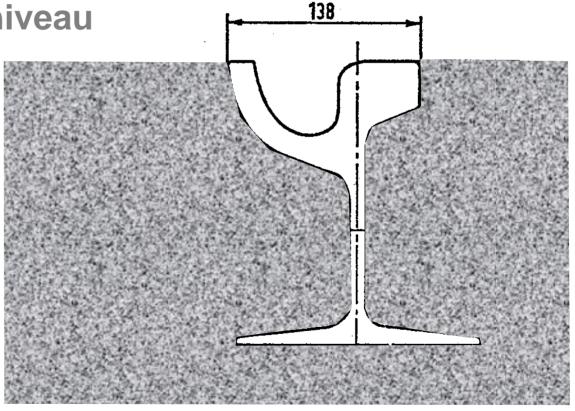
Rails soudés

- ▶ En général, les rails sont soudés
 - >> Soudure aluminothermique
 - >> Efforts introduits dans le rail lors de cette opération

Eclissage

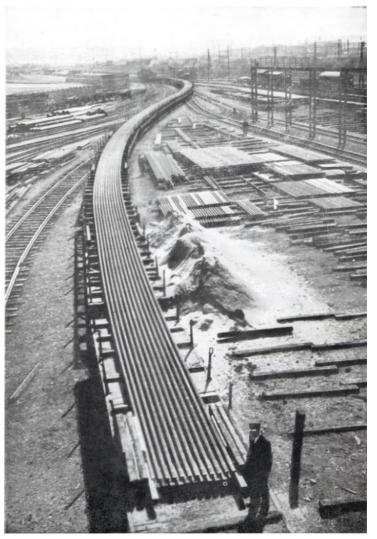
- Action de lier 2 rails au moyens d'éclisses
- Profilés métalliques appliqués de part et d'autre de l'âme et relié par des boulons



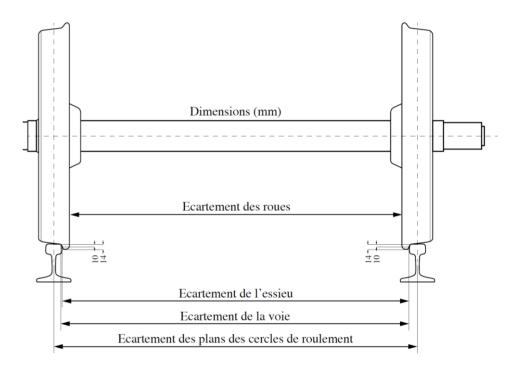

Rails à gorge

▶ Utilisation

>> Voies insérées dans une chaussée


>> Certains passages à niveau

Souplesse des rails


Souplesse des rails

Ecartement des rails

Mesuré 14 mm sous le plan de roulement

- Ecartement standard
 - >> 1'435 mm
 - → 60 % des voies ferrées dans le Monde
- **▶** Ecartement métrique
- Surécartement en courbe

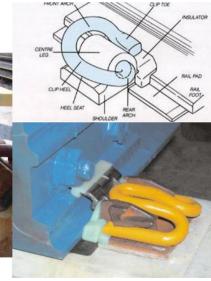
Attaches

Fonctions

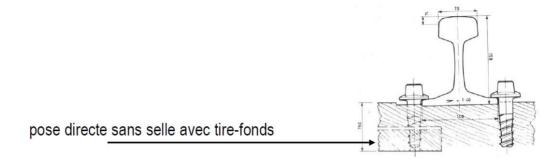
- Absorber et transmettre les efforts longitudinaux du rail à la traverse
- >> Amortir les vibrations et les chocs
- >> Maintenir l'écartement et l'inclinaison des rails
- Assurer l'isolation électrique entre le rail et les traverses

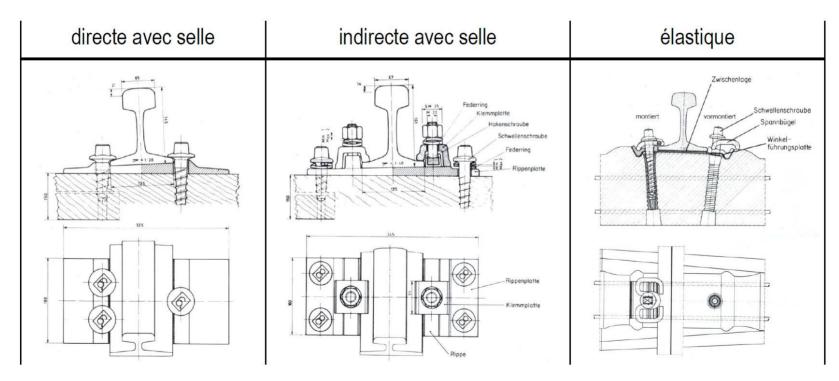
Types d'attaches

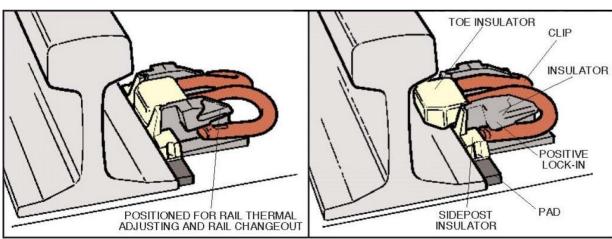
- > Selle et tirefond
- **▶** Selon type de traverses


Sur acier (A, Aei, Aek, Aeki)

Sur bois (Ke)

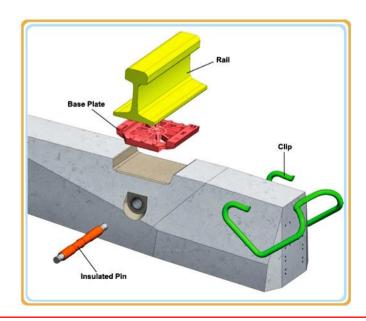



Sur béton (W, Ws)


Elastique sans tirefond (attaches e-clip & FastClip)

Types de pose

- Sans tirefond
- Rapidité et facilité de mise en œuvre
- Livré prêt à l'emploi
- Mécanisation totale



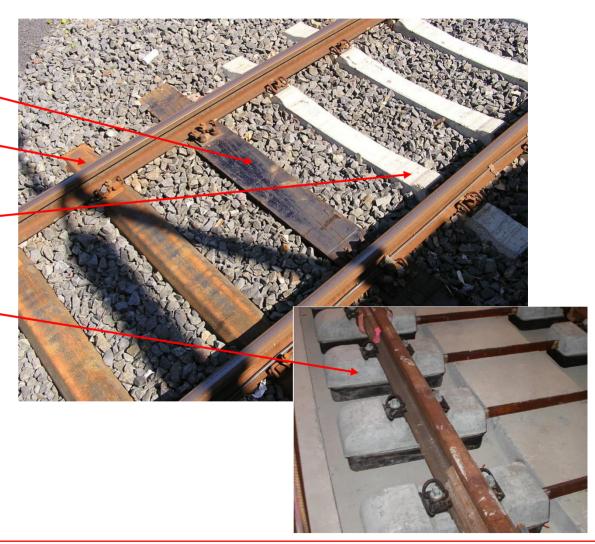
▶ LGV Est du record de vitesse 2007

Semelle élastique sous rail

▶ Rôle

- >> Absorber les vibrations
- >> Contribuer à la souplesse de la voie
- >> Contribuer à l'isolation électrique des rails
- Applications
 - >> Traverses béton / dalle en béton

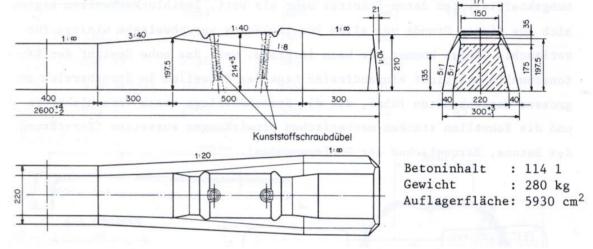
Traverses


Fonctions

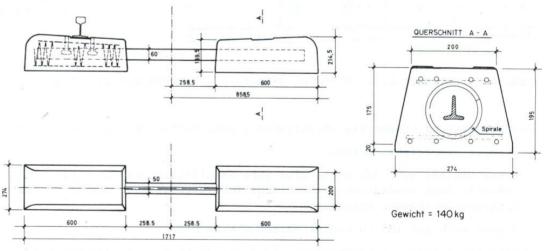
- Répartition des charges verticales transmises par le rail sur le ballast
- Reprise des efforts longitudinaux et transversaux résultant de la dynamique des véhicules et des variations de longueur du rail sous l'influence des variations de température
- >> Maintien de l'écartement et de l'inclinaison des rails
- Diminution de l'effet des déformations locales du sol d'infrastructure

Matériaux de traverse

- Bois
- Acier
- ▶ Béton
 - **→** Monobloc
 - → Blochet —
- Bois synthétique



Avantages / Inconvénients


Matériau	Avantages	Inconvénients		
Bois	Flexible (mauvais sols) Légères (~87 kg)	Faible duré de vie (~25 ans) Coût Faible résistance au déplacement latéral		
Métal	Facile à poser Légères (~70 kg) Durée de vie d' ~50 ans	Bruyante Conductrice		
Béton	Poids élevé – stabilité de la voie Facile à construire Durée de vie d'au moins 50 ans	Poids élevé – manutention Dégâts en cas de déraillement Charges dynamiques > 25%		

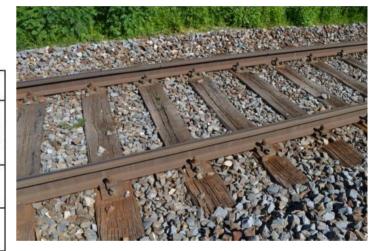
Traverses en béton

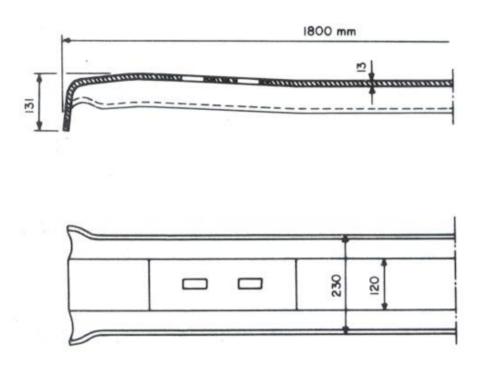
Béton monobloc

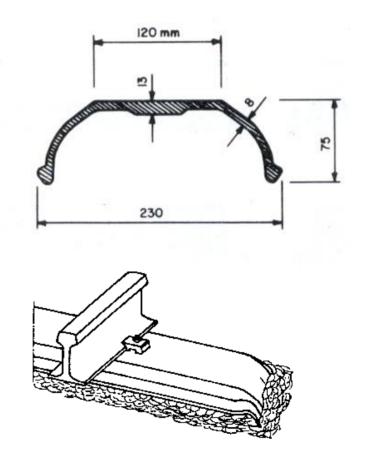


Béton avec blochets

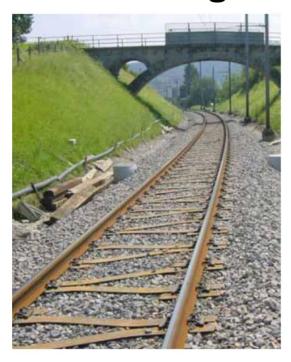
Traverses en bois

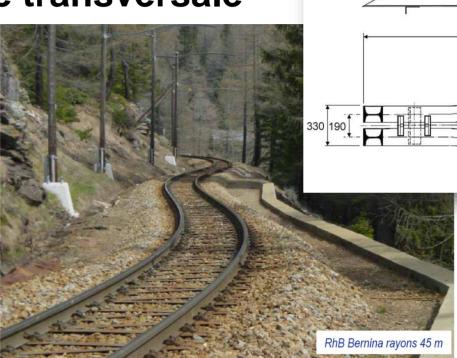

Traverses en bois

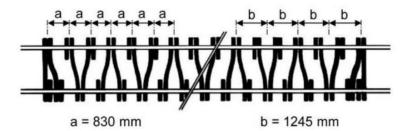



L.	
	Ĺ

	Cot	es des tra	averses	Genre	Poids		
Utilisation	h	b a		L	de bois	nouveau à 0.95 t/m³	ancien, à 0.88 t/m³
VP1 à VP4		260	170	2500 ou 1)	Chêne ou hêtre	93 ou 96 kg	86 ou 89 kg
VP5 et VS	150	240	160	2600		86 ou 89 kg	73 jou 79 kg
Voie à trois rails		260		2500		93 kg	86 kg
Appareil de voie	150	260	170	2200 à 4800	Chêne	37 kg/m	34 kg/m
	160					40 kg/m	37 kg/m
	180	220	150	Varia- ble	Chêne ou hêtre	38 kg/m	35 kg/m
Ponts	230	250	165			55 kg/m	51 kg/m
	250					59 kg/m	55 kg/m


Traverses métalliques traditionnelles




Traverses métalliques en Y

▶ Meilleur rigidité transversale

2300

Source : Jean-Daniel Buri, Citec, 2017

640 1160

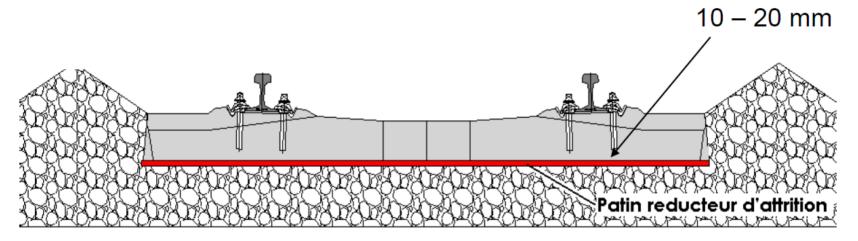
Traverses en bois synthétique FFU

- Domaine d'utilisation : ponts et appareils de voie
- Avantages
 - >> Imputrescible
 - Moins cher que les traverses en bois
 - Durée de vie : 50 ans
 - >> Isolation électrique
 - Résistance aux produits chimiques

Traverses

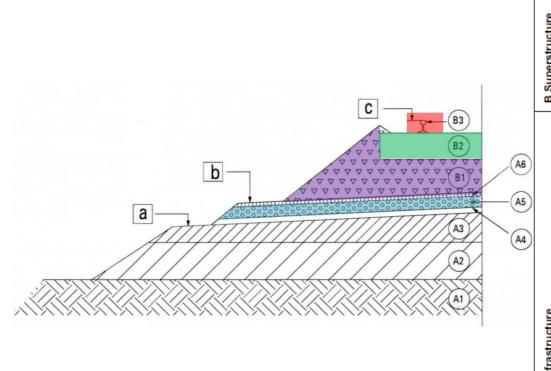
▶ Espacement des traverses

- ▶ 60 cm VP1 à VP4
- → 67 cm VP5 et VS


Masse d'une traverse

- → Bois

 90 kg
- Bois synthétique 90 kg
- → Acier 70 kg
- → Béton blochet 200 kg
- >> Béton monobloc 280 kg


Patins Réducteurs d'Attrition

▶ Améliore le contact traverse – ballast

Terminologie de la voie ferrée

	Couches		Surfaces		Exemples de materiaux usuels		
			С	Niveau de roulement (PdR)			
ture	В3	Rail			- Acier à rails		
Superstructure	B2	Traverse			BétonAcierBois		
BS	B1	Ballast	b	Couche de base	- Roche dure cond	cassée	
	A6	Couche d'étanchéité			Couche bitumineuse Agrégats minéraux	- Grave PSS	
	A5	Couche de fondation			- Grave 1, 2 - (GW ou GP)		
	A4	Couche de transition ¹⁾ Couche de drainage ²⁾	а	Plate-forme	Ballast Gravillon Ballast concassé Sable Géotextile		
A Infrastructure	A3	Terrain amélioré			Sol compactéStabilisationMatériaux de sul	ostitution	
astru	A2	Remblai			- Matériaux compa	actés	
A Infr	A1	Terrain naturel			- Terrain non rema	anié	

sur infrastructure rigide

2) sur roche fissurée et altérée

[Réglementation CFF – R RTE 21110]

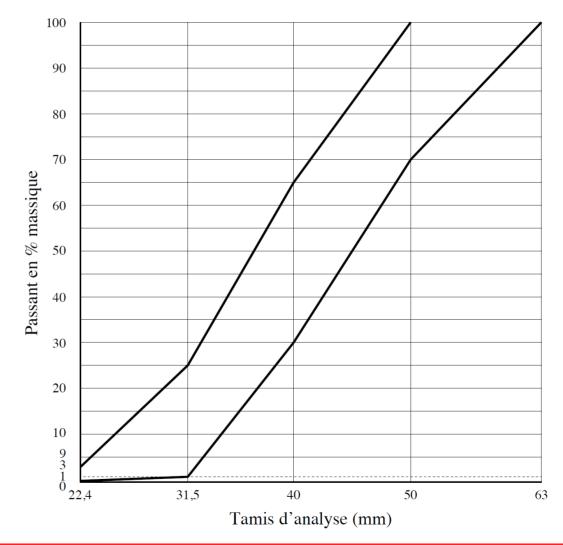
Ballast

Ballast

- Matériaux granulaires non liés
- **▶** Fonctions
 - Répartir les charges sur la plate-forme de telle manière que ces dernières ne provoquent pas de déformations excessives
 - >> Assurer l'écoulement des eaux de ruissellement
 - >> Neutraliser les effets des agents atmosphériques, en particulier du gel et du dégel
 - Eviter tout déplacement horizontal du système porteur rails-traverses

Efforts transversaux

- ▶ Rails soudés
- Dilation thermique


Critères de qualité

- Roches concassées (pierres dures)
- ▶ Granulométrie : 22,4 à 63 mm
- ▶ Forme du grain: polyédrique à arêtes vives
- Faible teneur en éléments fins 0.5 mm

- ▶ Bonne résistance à la fragmentation (Los Angeles)
- ▶ Epaisseur 20 cm à 60 cm

Fuseau granulométrique du ballast

▶ SN 670 110

Terminologie de la voie ferrée

	Couches		Surfaces		Exemples de materiaux usuels		
			С	Niveau de roulement (PdR)			
ture	ВЗ	Rail			- Acier à rails		
Superstructure	B2	Traverse			- Béton - Acier - Bois		
BS	B1	Ballast	b	Couche de base	- Roche dure cond	cassée	
	A6	Couche d'étanchéité			Couche bitumineuse Agrégats minéraux	- Grave PSS	
	A5	Couche de fondation			- Grave 1, 2 - (GW ou GP)		
cture	A4	Couche de transition ¹⁾ Couche de drainage ²⁾	а	Plate-forme	 Ballast Gravillon Ballast concassé Sable Géotextile 		
	A3	Terrain amélioré			Sol compacté Stabilisation Matériaux de substitution		
astru	A2	Remblai			- Matériaux compactés		
A Infrastructure	A1	Terrain naturel			- Terrain non rema	anié	

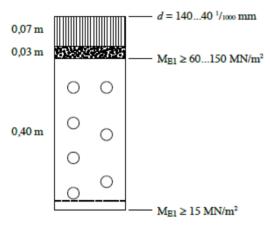
sur infrastructure rigide

2) sur roche fissurée et altérée

[Réglementation CFF – R RTE 21110]

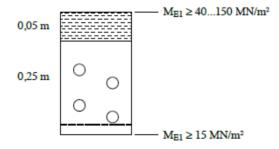
Infrastructure

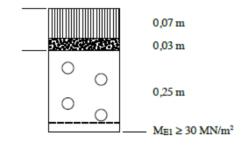
Fonctions des couches


- >> Couche d'étanchéité
 - □ Protéger l'infrastructure et le terrain naturel contre la pénétration d'eau/la croissance des plantes
- >> Couche de fondation
 - □ Répartir les charges à la plate-forme (en complément du ballast)
 - □ Protéger la sous-couche du gel

Infrastructure

- Fonctions des couches
 - >> Couche de transition
 - □ Séparer la couche de fondation et la couche sousjacente
 - □ Contribuer à l'élasticité dans l'infrastructure rigide (ponts, tunnels)
 - Couche de drainage
 - □ Evacuer l'eau


Dimensions infrastructure


Voies appartenant au groupe 1

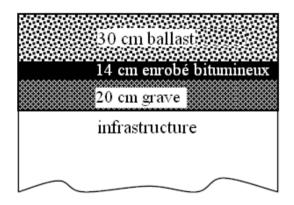
Voies appartenant aux groupes 2 et 3

Légendes

Revêtement bitumineux, caractéristiques selon SN 640 431

Granulats bitumineux/matériau de rabotage d'enrobé 0/16 mm selon SN 640 741 comme couche d'égalisation (augmente l'élasticité et diminue les vibrations)

Couche d'étanchéité graveleuse selon ch. 9.2 et annexe 6, p. ex. marne du Jura (Juramergel)



Grave 1 (Grave 2 autorisée seulement si exigences SN 670 120 remplies)

Eventuellement géotextile selon SN 640 241

Sous-couche bitumineuse

Source : Jean-Daniel Buri, Citec, 2017

Sous-couche bitumineuse

- Caractéristiques
 - → Épaisseur variant entre 4 et 20 cm
 - >> Posée entre la plateforme et le ballast
- Avantages durant la phase de construction
 - >> Protège la sous-couche des camions
 - Permet la circulation des camions indépendamment de la météo

Sous-couche bitumineuse

- Avantages durant la phase d'exploitation
 - Assure le drainage des eaux
 - >> Empêche la remontée de fines dans le ballast
 - Protège le terrain et les eaux souterraines en cas d'accidents
 - Protège la plateforme lors du renouvellement du ballast

Tassement de remblais

- La stabilisation de la plateforme est très importante
 - La correction des défauts après la pose des dalles est minimale (max 20 mm)
 - >> La correction des tassements initiaux des dalles coûte
 - → Bon compactage des remblais → réduction des tassements
- **▶** Etape cruciale
 - Ne pas négliger l'investissement dans un remblai pour réduire / annuler les tassements
- Utilisation de semelles plus hautes sous les rails

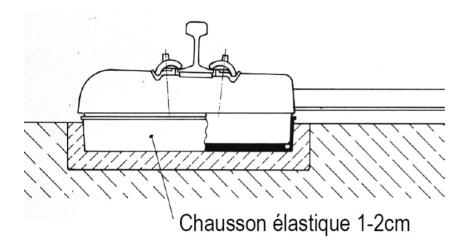
Exemple des étapes de construction

Rail & Traverse

Voies sans ballast

- Inconvénients de la voie ballastée
 - >> Voie épaisse
 - >> Tassements fréquents et irréguliers
 - >> Zones de transition OA: tassements différentiels
 - >> Envol du ballast
 - Dégradation du ballast, perte d'élasticité et de drainage
 - >> Entretien fréquent et onéreux (40 à 50 % du budget d'entretien de la voie)
 - >> Faible résistance latérale du ballast en courbe

Voies sans ballast


- **▶ VSB**
- Réseaux de métros
- ▶ Réseaux fortement sollicités
 - » LGV
 - >> Shinkansen

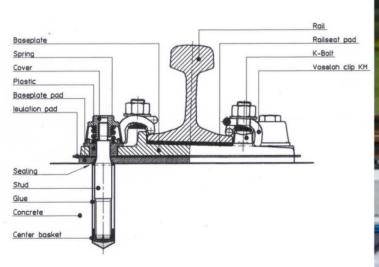
Types de VSB

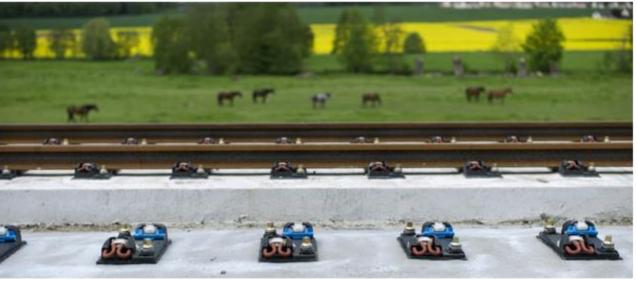
- VSB avec blochets intermédiaires en béton
- VSB avec selles
- VSB de type monolithique (Rheda)
- VSB sur dalle préfabriquée
- VSB avec rails encastrés

VSB avec blochets intermédiaires en béton

Analogue à une voie ballastée

▶ Tunnels M1

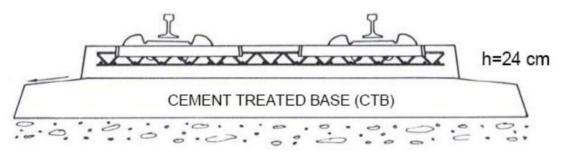




Source : Jean-Daniel Buri, Citec, 2017

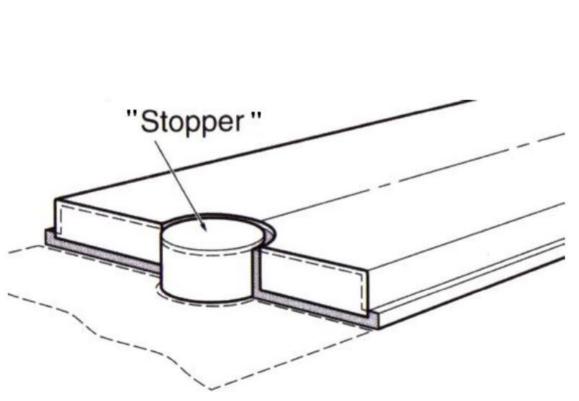
VSB avec selles

- > Selles enfoncées dans le béton frais
 - >> Pose de 1'000 m par jour
 - Délai d'un mois avant le passage du premier train (séchage du béton)

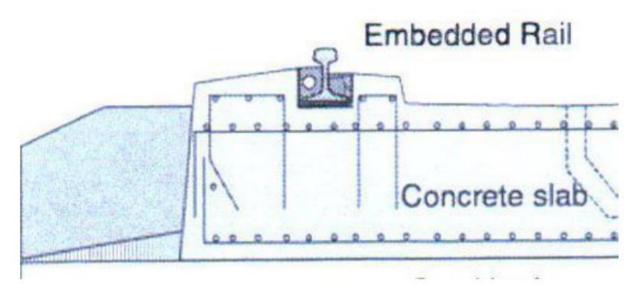

VSB de type monolithique

- **▶** Pose sur dalle continue
- **LGV**

VSB de type monolithique


- Pose mécanisée
- ▶ 500 m/jour
- Système Züblin : insertion des traverses par vibration dans le béton frais

VSB sur dalle préfabriquée


Dalle posée sur couche élastique

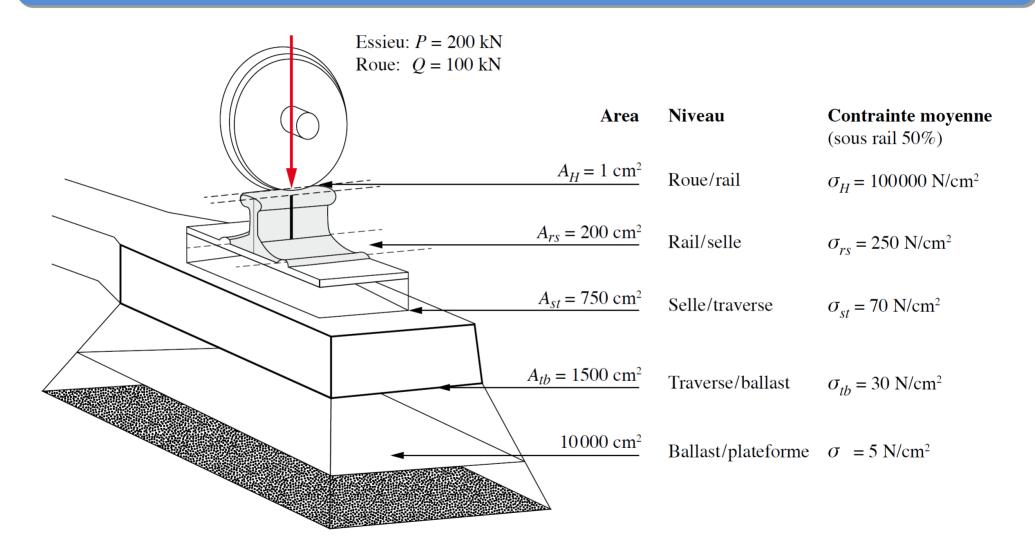
VSB avec rails encastrés

- ▶ Fixation continue des rails
 - >> Couche élastique entourant le rail
- ▶ Réduction du bruit de roulement
- Ponts et tramways

Avantages des VSB

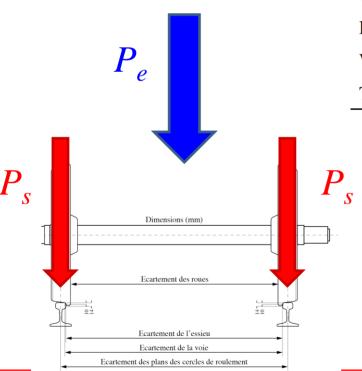
- Dévers et insuffisance de devers plus grands
- Hauteur de construction et poids réduit
- ▶ Meilleure maîtrise des transitions avec les OA
- Grande stabilité de la qualité géométrique de la voie
- ▶ Résistance au flambage et au gauchissement élevée
- Amortissement des vibrations
- Garantie de confort pour les passagers
- ▶ Entretien et coûts de maintenance réduits (- 25 %)

Inconvénients des VSB


- Grandes exigences de construction
 - » Remblais de très haute qualité
 - >> Précision de construction de la voie
- Moindre flexibilité pour toute modification future du tracé
- ▶ En cas d'accident, réparation longue et difficile
- ▶ Soigner les transitions VB VSB !
- ▶ 1,5 à 2 fois plus cher qu'une VB

Charges sur la voie

de circulation - Automne 2024


Répartition des charges

Charge utilisée pour le dimensionnement

Charge par essieu

$$P_e = 2 \cdot P_s$$

Type de train		Charge par essieu
	Nombre d'essieux	(kN)
Tramway	4	70
Train de service	4	120
Locomotive	4 ou 6	215
Wagon marchandise	2 ou 4	225
Train lourd (USA, Australie, Brésil)	2 ou 4	250 à 375

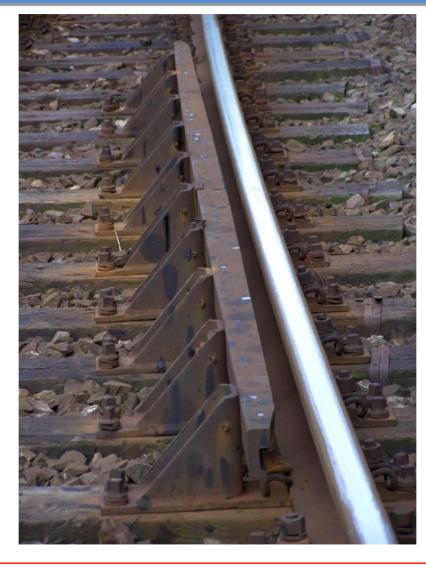
Exemples

> 200 kN / essieu

> 225 kN / essieu

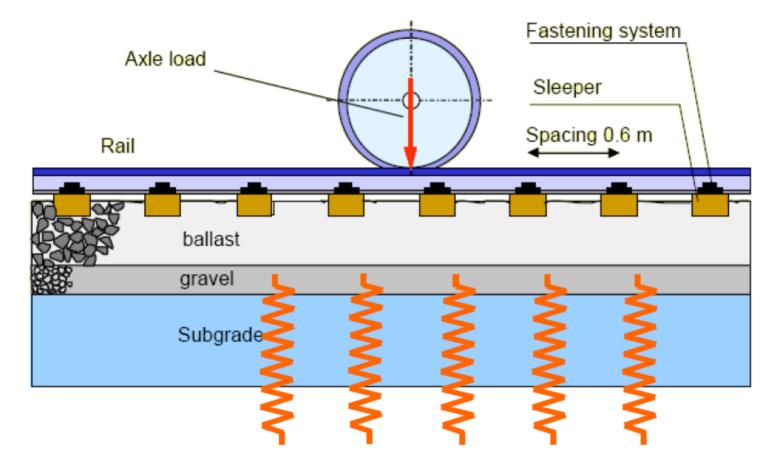
Charge utilisée pour le dimensionnement

$$\mathbf{P} = \varphi \cdot P_{s}$$

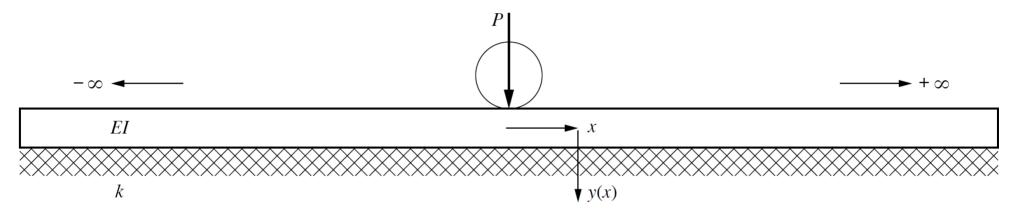

- P Charge utilisée pour le dimensionnement (kN)
- P_s Charge de roue (kN), déterminée par la moitié de la charge par essieu
- φ Coefficient de l'impact dynamique (> 1)

Charge utilisée pour le dimensionnement

Coefficient de l'impact dynamique φ


Méthode	Formule pour déterminer φ	Méthode	Formule pour déterminer φ
AREMA – American Railway Engineering and Maintenance Association	$1+5,21\cdot\frac{V}{D}$	ORE – Office of Research and Experi- ments of the Internatio- nal Union of Railway	$1,29 + 0,04 \cdot \left(\frac{V}{100}\right)^3$
DB – Deutsche Bahn Driessen	$1 + \frac{V^2}{3 \cdot 10^4} (V < 100 \text{ km/h})$ $1 + \frac{4.5V^2}{3 \cdot 10^5} - \frac{1.5V^3}{10^7} (V > 100 \text{ km/h})$	WMATA – Washing- ton Metropolitan Area Transit Authority	$(1+3.86\cdot 10^{-5}\cdot V^2)^{0.67}$
Afrique du Sud	$1+4,92-\frac{V}{D}$	Inde	$1 + \frac{V}{58,14 \cdot k^{0,5}}$
Clarke	$1 + \frac{19,65 \cdot V}{D \cdot k^{0,5}}$	V: vitesse (km/h) D: diamètre des roues (mm) k: coefficient (–)	

Dimensionnement du rail


Poutre continue sur une fondation élastique

▶ Charge ponctuelle

Poutre continue sur une fondation élastique

Winkler & Zimmerman 1867

y(x)

$$EI\frac{d^4y}{dx^4} + ky(x) = q(x) \begin{bmatrix} q(x) & q(x) \\ E & I \\ EI & EI \end{bmatrix}$$

déflexion à la position x (m) charge verticale distribuée (kN/m) module de Young du rail (MPa) moment d'inertie du rail (mm⁴) rigidité en flexion du rail rigidité de la fondation (MPa)

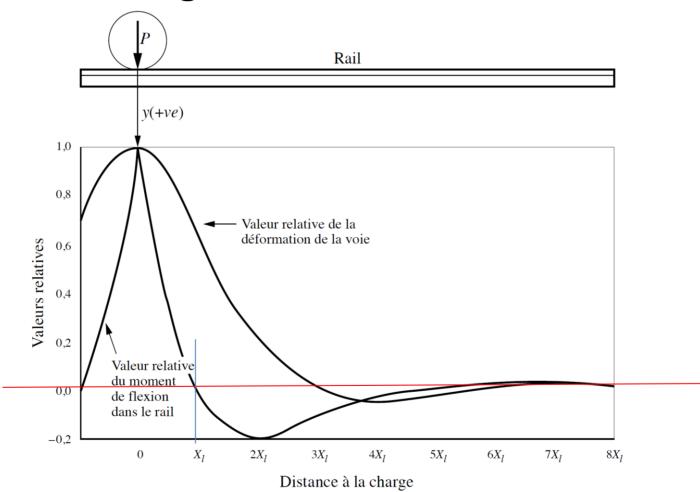
Poutre continue sur une fondation élastique

Charge ponctuelle P

>> Déflexion du rail

$$y_x = \frac{P\beta e^{-\beta x}}{2k} (\cos \beta x + \sin \beta x)$$

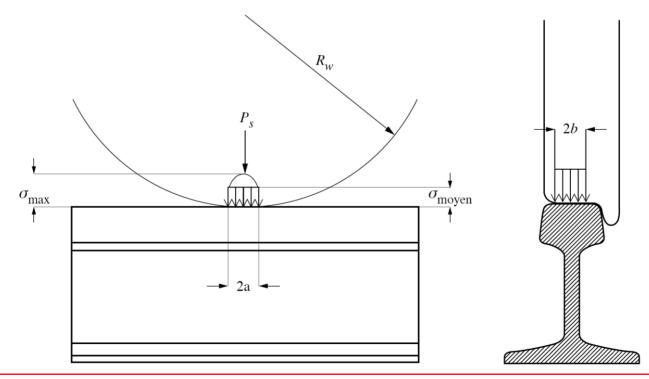
>> Moment de flexion du rail


$$M_x = \frac{P e^{-\beta x}}{4\beta} (\cos \beta x - \sin \beta x)$$

Rigidité relative β (Talbot)

$$\beta = \sqrt[4]{\frac{k}{4EI}}$$

Déflexion et Moment de flexion


▶ Action d'une charge P

Hay 1953

Contrainte de cisaillement roue-rail

- ▶ Contrainte de cisaillement au point de contact
 - >> Surface de forme elliptique
 - >> Eisenmann : surface de contact rectangulaire 2a · 2b

Déflexion et moment de flexion maximaux

Déflexion y (m)

Moment de flexion M (kNm)

Charge concentrée *P* (kN)

Plusieurs charges P_i (kN)

 $y_0 = \frac{P\beta}{2k}$

 $y_{max} = \sum_{i=0}^{\infty} P_{xi} \cdot B_{xi}$

 $M_0 = \frac{P}{4\beta}$

 $M_{max} = \sum_{i=0}^{t-n} P_{xi} \cdot A_{xi}$

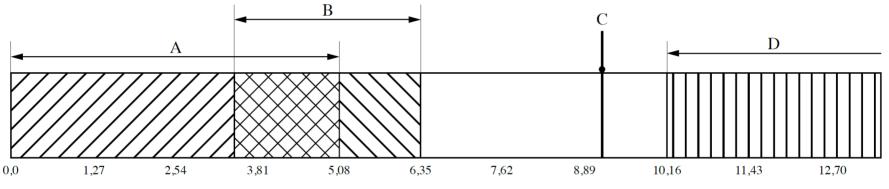
$$B_{xi} = \frac{\beta \cdot e^{-\beta x_i}}{2k} (\cos \beta \cdot x_i + \sin \beta \cdot x_i)$$

$$B_{xi} = \frac{\beta \cdot e^{-\beta x_i}}{2k} (\cos \beta \cdot x_i + \sin \beta \cdot x_i) \qquad A_{xi} = \frac{\beta \cdot e^{-\beta x_i}}{4\beta} (\cos \beta \cdot x_i - \sin \beta \cdot x_i)$$

 M_0 moment de flexion du rail

nombre d'essieux adjacents, i = 0 correspond à l'essieu de référence

distance de l'essieu de référence à l'essieu adjacent,


déflexion du rail

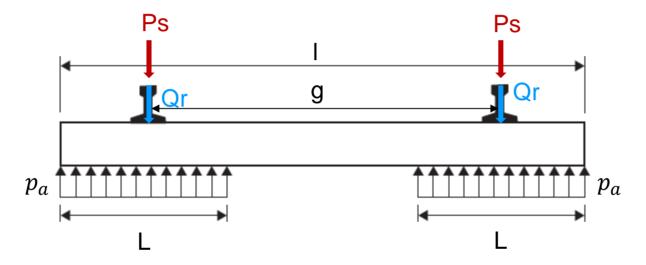
 P_{x_i} charge de dimensionnement à la position x_i

Déflexion admissible

▶ AREA 3,18 mm à 6,35 mm

Lundgren

Déflexion verticale maximale du rail (mm)


- A pour la nouvelle voie
- B pour la voie lourde en se basant sur la condition de flexibilité et rigidité
- C pour la voie légère (poids du rail < 50 kg/m)
- **D** pour la voie faible, mal entretenue, vite détériorée

Dimensionnement des traverses

Pression entre la traverse et le ballast

▶ Répartition des charges sous la traverse

$$p_a = \frac{Q_r}{BL} \cdot F_2$$
 $\begin{array}{c} B \\ l \\ L \\ F_2 \end{array}$
largeur de la traverse (m)
 $\begin{array}{c} L \\ L \\ C \end{array}$
longueur de la traverse (m)
 $\begin{array}{c} L \\ C \end{array}$
longueur effective de contact de la traverse sous le rail (m), par exemple : $L = l/3$ selon Clarke
 $\begin{array}{c} E_2 \\ C \end{array}$
charge transmise par le rail

Contrainte de flexion de la traverse

▶ Contrainte maximale

	Sous le rail	Au centre
Moment maximal de flexion (kNm)	$M_r = Q_r \cdot \frac{l-g}{2}$	$M_c = Q_r \cdot \frac{g}{2}$
Contrainte maximale de flexion (MPa)	$\sigma_r = \frac{M_r}{Z_r}$	$\sigma_c = \frac{M_c}{Z_c}$

g distance entre les deux rails (m)

l longueur de la traverse (m)

 Q_r charge transmise par le rail

 Z_c, Z_r moment statique de la traverse sous le rail, au centre (m³)

